SGA概述
系统全局区又称SGA (System Global Area)是 Oracle Instance 的基本组成部分,在实例启动时分配。是一组包含一个 Oracle 实例的数据和控制信息的共享内存结构。主要是用于存储数据库信息的内存区,该信息为数据库进程所共享。它包含Oracle 服务器的数据和控制信息,它是在Oracle服务器所驻留的计算机的实际内存中分配,如果实际内存不够再往虚拟内存中写。
SGA的特点:
1、SGA是共享的。
即当有多个用户同时登录了这个实例,SGA中的信息可以被它们同时访问;
2、一个SGA只服务于一个实例。
也就是说,当一台机器上有多个实例运行时,每个实例都有一个自己的SGA尽管SGA来自于OS的共享内存区,但实例之间不能相互访问对方的SGA区。
SGA的组成:
SGA中两个最大的区域为数据库缓冲区高速缓存(Databse Buffer Cache)和共享池(Shared Pool)。
这两者的尺寸直接影响了数据库的内存需求和数据库的操作性能。
SGA组成的其他部分为:
1.重演日志缓存(the redo log buffer);
2.数据字典缓存(the data dictionary cache);
SGA各组成部分的作用:
1.数据高速缓冲区(Data Buffer Cache)
在数据高速缓冲区中存放着Oracle系统最近使用过的数据块(即用户的高速缓冲区),当把数据写入数据库时,它以数据块为单位进行读写,当数据高速缓冲区填满时,则系统自动去掉一些不常被用户访问的数据。如果用户要查的数据不在数据高速缓冲区时,Oracle自动从磁盘中去读取。数据高速缓冲区包括三个类型的区:
1) 脏的区(Dirty Buffers):包含有已经改变过并需要写回数据文件的数据块。
2) 自由区(Free Buffers):没有包含任何数据并可以再写入的区,Oracle可以从数据文件读数据块该区。
3) 保留区(Pinned Buffers):此区包含有正在处理的或者明确保留用作将来用的区。
2. 共享池(Shared Pool)
用于缓存最近被执行的SQL语句和最近被使用的数据定义。
它主要由两个内存结构构成:
(1)Library cache
Libray Cache缓存最近被执行的SQL和PL/SQL的相关信息。实现常用语句的共享,使用LRU算法进行管理,由以下两个结构构成:Shared SQL area、Shared PL/SQL area 。
(2)Data dictionary cache
Data dictionary cache缓存最近被使用的数据库定义。它包括关于数据库文件、表、索引、列、用户、权限以及其它数据库对象的信息。在语法分析阶段,Server Process访问数据字典中的信息以解析对象名和对存取操作进行验证。数据字典信息缓存在内存中有助于缩短响应时间。
修改共享池的大小:ALTER SYSTEM SET SHARED_POOL_SIZE = 64M;
3.Redo Log Buffer Cache缓存对于数据块的所有修改。
主要用于恢复其中的每一项修改记录都被称为redo 条目。利用Redo条目的信息可以重做修改。
~~~~~~~~~~~~~~~~~~~~~~~~
修改SGA参数对oracle数据库进行调优
1、Shared pool tunning
Shared pool的优化应该放在优先考虑,因为一个cache miss在shared pool中发生比在data buffer中发生导致的成本更高,由于dictionary数据一般比library cache中的数据在内存中保存的时间长,所以关键是library cache的优化。
Gets:(parse)在namespace中查找对象的次数;
Pins:(execution)在namespace中读取或执行对象的次数;
Reloads:(reparse)在执行阶段library cache misses的次数,导致sql需要重新解析。
1) 检查v$librarycache中sql area的gethitratio是否超过90%,如果未超过90%,应该检查应用代码,提高应用代码的效率。
Select gethitratio from v$librarycache where namespace=’sql area’;
2) v$librarycache中reloads/pins的比率应该小于1%,如果大于1%,应该增加参数shared_pool_size的值。
Select sum(pins) “executions”,sum(reloads) “cache misses”,sum(reloads)/sum(pins) from v$librarycache;
reloads/pins>1%有两种可能,一种是library cache空间不足,一种是sql中引用的对象不合法。
3)shared pool reserved size一般是shared pool size的10%,不能超过50%。V$shared_pool_reserved中的request misses=0或没有持续增长,或者free_memory大于shared pool reserved size的50%,表明shared pool reserved size过大,可以压缩。
4)将大的匿名pl/sql代码块转换成小的匿名pl/sql代码块调用存储过程。
5)从9i开始,可以将execution plan与sql语句一起保存在library cache中,方便进行性能诊断。从v$sql_plan中可以看到execution plans。
6)保留大的对象在shared pool中。大的对象是造成内存碎片的主要原因,为了腾出空间许多小对象需要移出内存,从而影响了用户的性能。因此需要将一些常用的大的对象保留在shared pool中,下列对象需要保留在shared pool中:
a. 经常使用的存储过程;
b. 经常操作的表上的已编译的触发器
c. Sequence,因为Sequence移出shared pool后可能产生号码丢失。
查找没有保存在library cache中的大对象:
Select * from v$db_object_cache where sharable_mem>10000 and type in (‘PACKAGE’,’PROCEDURE’,’FUNCTION’,’PACKAGE BODY’) and kept=’NO’;
将这些对象保存在library cache中:
Execute dbms_shared_pool.keep(‘package_name’);
对应脚本:dbmspool.sql
7)查找是否存在过大的匿名pl/sql代码块。两种解决方案:
A.转换成小的匿名块调用存储过程
B.将其保留在shared pool中
查找是否存在过大的匿名pl/sql块:
Select sql_text from v$sqlarea where command_type=47 and length(sql_text)>500;
8)Dictionary cache的 优化
避免出现Dictionary cache的misses,或者misses的数量保持稳定,只能通过调整shared_pool_size来间接调整dictionary cache的大小。
Percent misses应该很低:大部分应该低于2%,合计应该低于15%
Select sum(getmisses)/sum(gets) from v$rowcache;
若超过15%,增加shared_pool_size的值。
2、Buffer Cache
1)granule大小的设置,db_cache_size以字节为单位定义了default buffer pool的大小。
如果SGA<128M ,granule=4M,否则granule= 16M ,即需要调整sga的时候以granule为单位增加大小,并且sga的大小应该是granule的整数倍。 2) 根据v$db_cache_advice调整buffer cache的大小 SELECT size_for_estimate,buffers_for_estimate,estd_physical_read_factor,estd_physical_reads FROM v$db_cache_advice WHERE NAME='DEFAULT' AND advice_status='ON' AND block_size=(SELECT Value FROM v$parameter WHERE NAME='db_block_size'); estd_physical_read_factor<=1 3) 统计buffer cache的cache hit ratio>90%,如果低于90%,可以用下列方案解决:
增加buffer cache的值;
使用多个buffer pool;
Cache table;
为 sorting and parallel reads 建独立的buffer cache;
SELECT NAME,value FROM v$sysstat WHERE NAME IN (‘session logical reads’,’physical reads’,’physical reads direct’,’physical reads direct(lob)’);
Cache hit ratio=1-(physical reads-physical reads direct-physical reads direct (lob))/session logical reads;
Select 1-(phy.value-dir.value-lob.value)/log.value from v$sysstat log, v$sysstat phy, v$sysstat dir, v$sysstat LOB where log.name=’session logical reads’ and phy.name=’physical reads’ and dir.name=’physical reads direct’ and lob.name=’physical reads direct (lob)’;
影响cache hit ratio的因素:
全表扫描;应用设计;大表的随机访问;cache hits的不均衡分布
4)表空间使用自动空间管理,消除了自由空间列表的需求,可以减少数据库的竞争
3、其他SGA对象
1)redo log buffer
对应的参数是log_buffer,缺省值与 OS相关,一般是500K。检查v$session_wait中是否存在log buffer wait,v$sysstat中是否存在redo buffer allocation retries
A、检查是否存在log buffer wait:
Select * from v$session_wait where event=’log buffer wait’ ;
如果出现等待,一是可以增加log buffer的大小,也可以通过将log 文件移到访问速度更快的磁盘来解决。
B、Select name,value from v$sysstat where name in (‘redo buffer allocation retries’,’redo entries’)
Redo buffer allocation retries接近0,小于redo entries 的1%,如果一直在增长,表明进程已经不得不等待redo buffer的空间。如果Redo buffer allocation retries过大,增加log_buffer的值。
C、检查日志文件上是否存在磁盘IO竞争现象
Select event,total_waits,time_waited,average_wait from v$system_event where event like ‘log file switch completion%’;
如果存在竞争,可以考虑将log文件转移到独立的、更快的存储设备上或增大log文件。
D、检查点的设置是否合理
检查alert.log文件中,是否存在‘checkpoint not complete’;
Select event,total_waits,time_waited,average_wait from v$system_event where event like ‘log file switch (check%’;
如果存在等待,调整log_checkpoint_interval、log_checkpoint_timeout的设置。
E、检查log archiver的工作
Select event,total_waits,time_waited,average_wait from v$system_event where event like ‘log file switch (arch%’;
如果存在等待,检查保存归档日志的存储设备是否已满,增加日志文件组,调整log_archiver_max_processes。
F、DB_block_checksum=true,因此增加了性能负担。(为了保证数据的一致性,oracle的写数据的时候加一个checksum在block上,在读数据的时候对checksum进行验证)
2)java pool
对于大的应用,java_pool_size应>=50M ,对于一般的java存储过程,缺省的 20M 已经够用了。
3)检查是否需要调整DBWn
Select total_waits from v$system_event where event=’free buffer waits’;
~~~~~~~~~~~~~~~~~~~~~~~~
PGA是进程全局区,也有叫用户全局区
PGA是有用户连oracle时,oracle给开辟的一个内存区,只供该用户使用,该用户断开后,oracle就会将这块内存回收。
整理自网络
Sorry, the comment form is closed at this time.
No comments yet.